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INCREMENTAL PLASTIC ANALYSIS IN THE PRESENCE OF
LARGE DISPLACEMENTS AND PHYSICAL INSTABILIZING

EFFECTSt
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Abstract-Elastic-plastic constitutive laws are assumed with allowance for the following: lack of normality.
corners with interaction between yielding modes and work-softening. Continua are replaced by finite element
models which fulfill compatibility throughout. Equilibrium equations refer to the deformed configuration;
strains. however. are presumed small. The structural response to rates of loads and dislocations (e.g. thermal
strains) is studied and the following results are obtained; (a) six extremum properties of the solutions. which
reduce the incremental problem to a quadratic programming problem; two of these properties are valid without
restrictions; (b) methods for obtaining lower and upper bounds to the local instantaneous compliance with
respect to a single load or dislocation; (c) criteria for the uniqueness of solution to the incremental problem and
for the overall stability of the system.

1. INTRODUCTION

THE plastic analysis of structures undergoing large deformations represents on the one
hand a particularly difficult, still unsettled field of nonlinear mechanics, on the other
hand an almost mandatory task for the engineer in many practical stiuations. It is not
surprising therefore, that an intensive research effort has been and is being devoted to the
many relevant problems. In the abundant literature available it seems possible to dis­
tinguish results mainly useful for the theoretical framework of the fenomenology in question
and a stream ofstudies predominantly aimed at the numerical analysis ofspecific categories
of structures. On the theoretical side at least the traditional references to the contributions
of Shanley [IJ and Hill [2,3J must be given as a first orientation. On the application­
oriented side, a survey of the achievements up to 1959 can be found in Horne [4].

The latter stream of research in the field of large deformations has been recently joined
by the tremendous development of the matrix methods ofstructural analysis. Finite element
discretization has proved extremely suitable for studying continua of any shape, even
when nonlinearity either of geometrical or of physical nature or both are present. However,
finite element models do not only supply a basis for approximate numerical solutions of
complicated problems, but also can represent an alternative convenient description of
the behaviour of mechanical systems.

As emphasized by Besseling [5, 6J, also the traditional continuous field description
gives but an average, in the neighborhood of each point, of phenomena which are in­
herently discontinuous on a microscopic scale. The vector-matrix representation in terms
of lumped field quantities, if these are properly chosen, is less detailed (as detailed as one

t The results contained in this paper have been partially presented at the Conference on Instability Problems
held at the University of Genova. 3-4 November 1969 (Techn. Report I.S.T.C.. Polit., Milan, December 1969).
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actually needs), but by no means less general: all properties and features of the mechanic::li
behaviour of solid bodies are equally reflected both in the continuous and in the discrete
description. The differences consist merely in formal aspects, and the transfer of physical
notions from one to another representation is an easy matter. Therefore it is clearly possible
to develop a theory of the structural behaviour founded on the latter description.

Some arguments in favour of such a theory are quite general: the mathematical tools
of matrix algebra appear more manageable and open to the physical insight than those of
the functional analysis; moreover they are ideally suited to be directly programmed for
computers.

In plasticity, matrix theories appear to be particularly advantageous, since plastic
systems are governed by basic relation sets which involve both equations and inequalities.
Properties and solution procedures of certain sets of algebraic equations and inequalities
and their connexions with optimization problems have been recently well explored in
some modern fields of applied mathematics (operations research, programming theory.
theory of games). We have pointed out in previous works that several mathematical results
in these fields apply to the relation sets which govern discrete plastic systems, and meet
well the requirements of both their theory and engineering analysis [7, 8]. Continuous
plastic systems give rise to sets of (differential) equations and inequalities, to be discussed
in a mathematical framework which is not only relatively more sophisticated but also.
to the author's knowledge, less developed and consolidated at present, despite outstanding
achievements due to Moreau et al. (see e.g. [9J).

The above considerations suggest as worthwhile and fruitful the combination of
finite element discretization and mathematical results from programming theory and
related topics, both in order to implement the knowledge of the structural plastic behaviour
in the presence of instabilizing effects, and to introduce new techniques for the numerical
solution of practical engineering problems.

The present paper is intended as a contribution in both these directions.
First (Section 2) we replace continua of any dimensions and shape by finite element

models, which imply homogeneous stress and strain fields in each element and comply
with compatibility everywhere, but whose node and mesh pattern does not need to be
specified. "Natural" generalized stresses and strains are adopted to define the statical
regime of each element and this concept proves once again productive of clearness and
compactness for the subsequent analysis.

The compatibility and equilibrium equations for the finite element assembly can be
linearized for the "incremental" processes provoked by infinitesimal external actions
added to a current known situation. Only such incremental problems are considered
in the paper, being understood that any load and/or dislocation (e.g. thermaO history
may be followed as a sequence of incremental processes of properly chosen small amplitude.
For a detailed discussion of these preliminaries the reader is referred to some leading
authors in matrix methods of mechanics such as [10, 11]. Displacements are usually
called "large", when they affect the equilibrium equations. Strains are not necessanly
large as a consequence: we shall suppose that they are not (as it happens to be in most
structural problems), so that the constitutive laws can be formulated as in the small dis­
placement theory, provided that they be expressed in intrinsic (unaffected by rigid body
motions) stress and strains. as the "natural" components actually are.

The constitutive laws adopted herein (directly for the finite elements). are more general
than the traditional ones. In singular points of the yield surfaces. "interaction" between
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yielding modes is admitted, according to Mandel's generalization of Koiter's theory [12].
Moreover, Drucker's stability postulate [13J may be violated for either lack of normality
(of the plastic strain vector to the yield locus) or work-softening or both. These features
of the material behaviour can be called "physical instabilizing effects" : in fact the sub­
sequent analysis will show that, according to the spirit of Drucker's postulate, they play
a role comparable to that of the instabilizing effects due to large displacements (which
shall be referred to here as "geometrical instabilizing effects", although, clearly, they may
act in favour of stability as well). The assumed general, "linear" kind of flow rules have
been examined in [8]. The external actions may include both (nodal) forces, supposed
conservative (dead loading) and imposed strains or displacements (dislocations e.g. of
thermal nature).

In Section 3 three extremun principles are established which reduce the incremental
problem in question to optimizations of quadratic functionals under linear equations and
inequality constraints. assuming as variables the displacement rates and the plastic multi­
plier rates. The first principle is characterized by the interesting and, in a sense, striking
property of unrestricted validity throughout the field where the basic weak assumptions
hold. In contrast to this "general" theorem, the second and third characterizations of
solutions can be proved only under the conditions of normality, reciprocity interaction
between yielding modes and convexity of a certain quadratic form (the last condition
represents a limitation on the cumulative instabilizing effect of large displacements and
softening). However these "particular" properties hold in a range broader than Koiter's
classical potential theory. From them we derive by specialization some already known
results [14, 16, 17J, among which Hill's minimum principle [2J, originally established,
however, with allowance for large strains too.

The ease and compactness of all proofs are due to the fact.that deliberate systematic
use is made of the aforementioned mathematical results, the essence of which is
outlined in the Appendix for the reader's convenience. These results offer the additional
advantage of emphasizing the intimate structure of the mechanical theory developed:
thus the extremum properties (II) and (III) correspond to a pair of "dual sym­
metric" quadratic programs, of which property (I) is the "selfdual, composite"
program.

In Section 4 three extremum principles for the plastic multiplier rates are obtained.
The levels of generality and the mathematical structure are the same as for the develop­
ments of Section 3. The new statements are shown to cover as special cases some already
known results [18-20].

In Section 5 the former pair of dual extremum theorems is used in order to bound both
from below and above (without actually solving the incremental problem) the instan­
taneous stiffness that the system exhibits locally with respect to a single load or dislocation
component.

In the presence of instabilizing effects, uniqueness and existence of solutions are
important questions, closely connected with the stability analysis. These topics are dis­
cussed in Sections 6 and 7, and the relevant analytical criteria are established. Besides
new results and generalizations, also known notions flow straightforwardly, such as
Shanley's concept of stable equilibrium bifurcation [lJ, Hill's sufficient criteria for unique­
ness and stability in the presence of geometrical second order effects only [2], and the
uniqueness and stability criteria previously given in Ref. [21] for the cases where only
physical instabilizing effects are present.
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The transfer of results from the vector-matrix theory to the tensorial field descriptIOn
may not be obvious; therefore this point is discussed in Section 8.

The theoretical treatment developed seems to have an operative value. as it leads
directly to fairly efficient numerical techniques, for solving the incremental problem.
bounding the local instantaneous compliances and for the practical checking of stability
or uniqueness. In Section 9 the relevant algorithms are indicated by referring the reader
to the specialized literature for detailed information.

The extension of the theory to allow for large strains and its adjustment to the analysis
of rigid-plastic systems will be discussed elsewhere.

2. BASIC RELATIONS

2.1 Finite element discretization and /lotation

The matrix-vector description of structural behaviour used in this study. rests on
the following notions. which have become customary in finite element analysis of continua
[10.11,22].

(a) Three- and two-dimensional continua are represented by an assembly of tetra­
hedral and triangular finite elements respectively, by selecting a suitable set of vertices
('"nodes").

(b) Within each element the variation of displacements is prescribed to be linear and.
therefore. the stress and strain fields constant (homogeneous). Thus compatibility is fulfilled
everywhere. equilibrium only at the nodal points. where all external forces are assumed
acting.

(c) Each element is assigned average homogeneous properties. which may vary from one
to another in order to allow for dishomogeneity.

(d) The elemental stress and strain states are defined by means of "intrinsic" or
"natural" generalized stress and strain components respectively.t

(e) Displacements possibly imposed on the constrained boundary of the body are
interpreted as dislocations prescribed within additional rigid bars or elements of suitable
location and direction.

In what follows. we indicate column-vectors and matrices by bold face letters; a super­
posed tilde means transpose, a superposed dot derivative with respect to time (rate).
Vector inequalities apply to each pair of corresponding components: 0 denotes vectors or
matrices whose entries are all zero.

On the basis of the above discretization, the current configuration of the continuum
considered will be described by the vector u of nodal displacements (with reference to
an "initial" configuration and to fixed Cartesian axes common for the whole system). the
current external load distribution by the analogous vector F: the current states of stresses.
strains and imposed dislocations thoughout the body will be defined by the vectors

12.1 J

+ The natural vanable, ta concept introduced and discussed by Argyris et ill ,10. 22]) are proportlonal to
direct stresses and strains measured parallel to the element edges and represent nodal forces along the edges and
edge elongations respectively (6 components for tetrahedra. 3 for tnangles. 1 for pm-ended bars\. They might be
-.:alled also "mdependem" c)r "intrinsic" in view of the fact that the generahzed strains SO defined are unaffected
hy ngld body motIons. the corresponding genaal17ed stresses are selfeqwlibrateJ
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formed by assembling as subvectors. in a fixed order. all the generalized variables vectors
O'i. t i. &i which govern the corresponding fields within each of the n elements of the structure.

2.2 Constitutire rt'iations

The behaviour of any element. described by the t'(O'I) relationship. reflects all features
of the behaviour of its material described by the c;~s((J'~s) relation. because of the one-to-one
linear and contragredient character of the correspondences between natural generalized
variable vectors and element fields (for explicit formulations of these correspondences
see e.g. [10. 22J). Therefore we may introduce the constitutive laws by referring directly
to elements instead of to materials. The incremental elastoplastic stress-strain relations
adopted herein will be of the general "linear" type we discussed in [8].

These rate relations can be analytically represented as follows (for the generic ith finite
element) :

t' = tie + t'P +/,'
tie = (Si)-lifl

t'P = vii.'
<j>i = l"hri _ Hij,;

J,i Z O. <j>i ~ 0

«piAi = 0

(2.2)
(2.3)
(2.4)

(2.5)

(2.6)

(2.7)

Equation (2.2) distinguishes the elastic. plastic and dislocation (e.g. thermal) contributions
to the strain rates. Si is the ("natural", symmetric, positive definite) elastic stiffness matrix of
the ith element. Matrix Ni == [Nil' .. N~.J collects as columns the gradients N~ == (acp~/OC1i)"y,

of the Si yield functions cpij which are zero in the current stress state 0'1 i and, hence,
represent yield modes which can be activated in the incremental process. Vi == [V; ... V:.J
is the analogous matrix formed by the gradient~ V~ == (al/J~/OC1i)"y. of the corresponding
plastic potentials t/J~: vectors «pi == [<p i

1 ••• <P~;J and Ai == [),il ... ),~;J include the yield function
rates and the plastic multiplier rates of the Si activable modes. Hi denotes the Si x Si inter­
action work-hardening matrix. For a detailed discussion of the above flow laws see [8].
Their meaning and generality become clearer by referring to Fig. 1 (where Si = 2) and by
noting the following special cases.

The stress states from which the incremental process starts, is either elastic or corres­
ponds to a regular or to a singular point of the instantaneous yield surface, depending on
whether Si = 0, Si = I, Si > 1, respectively. The circumstance Ni = Vi reflects normality:
then W = 0 characterizes perfectly plastic behaviour, Hi == diag[Hi

l ... H~iJ with H~ > 0
implies workhardening according to Koiter's hypothesis [14J; a nondiagonal but sym­
metric, positive semidefinite Hi allows for interaction between plastic modes as in Mandel's
generalization [12J of Koiter's theory.

We do not a priori assume any restrictive hypothesis on Si, Ni, Vi, Hi (which are, more­
over, history-dependent entities) except the weak hypothesis that the vectors of each set
N i

j and V~ (j = 1 ... Si) are linearly independent and all scalar products N~Vj are positive.
Therefore some non traditional but theoretically and technically important features of
plastic phenomenology can be covered by the present theory, namely:

lack of normality (nonassociatedflow-laws) Vi #- Ni: softening (local regression of the
yield surface by yielding), H1h < 0; lack of reciprocity in the interaction effects. H1k #- H~h'

Anisotropy is excluded in neither the elastic nor the plastic ranges, since the restrictions
on Si and CP~ required by isotropy are nowhere needed in what follows.
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FIG. I. A graphical interpretation of the incremental stress-strain laws in two dimensions.

It is convenient for future developments to write in a compact form the relation between
the vectors iJ and t, equation (2.1). which depict the desired incremental stresses and strains
throughout the structure subdivided in n finite elements. To this end let us form the super­
vectorsl == [ll ... l/n],q> E [q>l ... q>/n]andthediagonalblockmatricesS == diag[Sl ... Sm].
H E diag[Hl '" HIn], Vd == diag[V l ... VIn], Nd == diag[N 1

•.• NIn], where m is the number

of the elements at the yield point. Moreover, let matrix V Et~dj be such that the plastic

strain rate vector tP for the whole structure can be expressed as vi: analogously. let

N Et~d_J By means of these new symbols, the constitutive laws (2.2H2.7) can be assem­

bled, for i = 1... n, in the relation set:

«P = NiJ-H)" q>i = o.
(2.8)

(2.9a. b. c. d)

The dependence ~(iJ), which governs the plastic incremental response of the element
assembly. is expressed by (2.9) in the form of a "linear complementary problem" defined
by matrix H and vector Ncr (cf. [8J and Appendix AI.

As they concern intrinsic quantities under the hypothesis of small strains. the above
relations are not affected by the presence of large displacements.

2.3 Compatibility equations

An infinitesimal geometrical perturbation. i.e. a nodal velocity vector u. superposed
to a given configuration Y. uniquely defines a strain rate distribution through the linear
transformation

i: = Bu. 11 101
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In regimes of large displacements. the compatibility matrix B depends on the configuration
Y(U). but not on the configuration changes U.t

2.4 Equilibrium equations

In a quasi-static regime of large displacements equilibrium relates external load rates
to natural stress rates (in the sense specified above) through the equation:

(2.11 )

where KG represents the geometric stiffness matrix of the assembly: KG is symmetric and
depends on the geometry and. linearly. on the stress state a} pertaining to the situation Y
from which the infinitesimal change considered starts: it is not dependent on the incre­
ments of the variables and on the material properties. For a derivation and detailed
discussion of equation (2.11) and in particular of KG we refer the reader to Argyris, [10. 22].

The set of relations (2.8H2.11 l completely governs the static behaviour of the system
in the neighborhood of a given equilibrated configuration Y In contrast to the small
displacement analysis. the compatibility matrix varies with the considered situation Yand
the equilibrium equations acquire the corrective term KGu: in the present formulation.
the substantial novelty of the incremental analysis problem for large displacements
concentrates in this term only.

3. EXTREMUM PRINCIPLES FOR DISPLACEMENT AND
PLASTIC MULTIPLIER RATES

3.1 The ti, )" <P/ormulation
The governing relation set (2.8H2.11) contains five unknown variable vectors: t, iI.

ti, i., <p. By substituting (2.8) into (2.10) and solving the latter equation with respect to iIt we
obtain:

iI = SBti-SV).-So (3.1 l

Substitutions of (3.1) into the equilibrium equation (2.11 l and into (2.9a), lead to the
following alternative set of governing relations in only three unknown vectors:

Let us put:

(BSB+KG)ti-BSVi. = F+B&)

<p = NSBti - (H + NSVl}" - N&)

<'P). = O.

(3.2)

(3.3)

(3.4a. b, cl

K = BSB+KG = KE+KG (3.5)

observing that for K the denomination of instantaneous (external) elastic st(ffness matrix
is appropriate: in fact, should any further yielding be precluded, the displacement response
to external action increments added to the situation Y, would be simply given by

(3.6)

t B can be expressed as the product of a matrix which depends only on the current geometry of the system
(direction cosines of the element edges at Yl and of a matrix whose entries are 0 and 1 ("location" or "Boolean"
matrix [10.22]).

~ The (internal) stiffness matrix S of the assembled structure cannot be singular. since S is a diagonal super­
matrix. each ith entry of which is a submatrix given by the element natural stiffness matrix S' which appears in (2.21.
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It is worth stressing that K may be singular and/or nondefinite, as it consists of the purelr
elastic KE and the geometric KG addends: the former positive definite t addend KE would
represent the elastic stiffness of the assembly only if there were no second order geometrical
effects.

3.2 A "general" minimum theorem for displacement and plastic multiplier ratt's

It is convenient to introduce the new symbols

Cy == BSV, CN == BSN

G == H+NSV

and to rewrite the relation set (3.2). (3.3), (3.4b) in the form:

F+Bs)-Ku+Cy~ = ",- 2: 0

-(F+B&))+Ku-Cv~ = V.,. 2: 0

Ns.)-C.vu+G). = -$ 2: 0

(37a. b)

l3.8}

(39)

U.101

where", -. v~ are vectors of auxiliary "slack" variables, which are required to vanish by
the equations and inequalities (3.9) which involve them. Let us express the displacement
vector as:

u = -u- +u+ (3.10). where u- 2: 0. u.,. 2: 0

and substitute (3.10) into (3.9).

By assuming:

13.11 )

r F+BSO l
q=1 ~i~~I:

L Nsi' ~

w== (.1. lla. b. CI

~ K-K . Cvl

l.... ·· ....·.·.·.c,'~·,. '.1
"1 == -:-;~":'.:..'~ \ G J

we notice that (3.9), i.e. (3.21. (3.31, (3Ab). can be written as:

w2:0

whereas the remaining (3.4b. cl (3.1ll can be expressed by:

:. 2: 0: (iJ~ O. 1.1.l5u. hi

Thus we have reduced the u. ).. <i> formulation of the mechallical problem in hand w the
linear complementarity problem (3.141. (3.15). This in turn is equivalent to the 4LUuirmic
programming problem:

minimize 13.161

t B is full column-rank li.e. has hneariy independent columnS! bv lts very dennltl\)n throu~h c<.jllatlOn 12 J"I
hence the definileness ofS implies that d' K,
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subject to

M~+q ~ 0 (3.17)

provided that the optimal value of this be zero (see Appendix A.I).
By substituting equations (3.12). (3.13) into (3.161 (3.17), performing some algebraic

manipulations and. finally. making use of equations (3.5). (3.7). (3.8). we reach from (3.16l.
(3.17) the following conclusion:

(1) In the class ofall distributions ofl'elocities iJ and plastic multiplier rates~. which satisfr
the linear constraints

}.~o

NSBU -(H +NSV)}. s;; Nsb

(K E + Kdti - BSV~ = F + Bsb

(3.18al

(3.18b)

(3.19)

thela solution. (f any, of the incremental problem for given load and dislocation rates F. S,
minimizes the quadratic functional

Q(iJ, ~) == i'iKGu +}.H~+(iiB-1N)S(BiJ - V}.)-fiJ-AS(BiJ-N~). (3.20)

The absolute maximum ofQ, ({zero, characterizes the solution: ifnot zero no solution exists.
The inequalities (3.18) come from the constitutive laws (the latter from the nonpositive

requirement on the rates of the yield functions which are zero in Y); equation (3.19)
expresses equilibrium, but also compatibility is implicitly taken into account in the
elimination of t. Therefore the above statement essentially gives an extremal formulation
of the nonlinear requirement contained in the plastic flow rules, where all nonlinearity
of the incremental problem is included.

Theorem (I) is "general" in the sense that, to be valid, it requires no further restrictions
besides those. very weak indeed, assumed in formulating the governing equations. It is
"se~{dual" because the dualization (in the sense of programming theory) of its mathematical
expression would lead to the same conclusion (see Appendix A.2).

A most desirable special property is the positive semidefiniteness of matrix M. which
makes the energy function convex and many wellknown quadratic programming algo­
rithms applicable; this property, however, does not imply symmetry, and, hence, neither
normality. nor reciprocity interaction.

3.3 "Particular" extremum theorems for displacement and plastic multiplier rates

3.3.1. Suppose now that matrix M be both symmetric and positive semidefinite, which
means that the nonlinear part of Q(u, ~) is nonnegative whatever U. J. may be [hypothesis
(3.21)]. Through (3.5), (3.7), (3.8). (3.13), it appears that: M is symmetric if. and only if.
normality holds (V = N) and the interaction between yielding modes exhibits reciprocity
(H = H). It is easily seen from (3.20) that, when V = N, a sufficient not necessary condition
for the positive semidefiniteness of M is the validity of the same property for H (non­
softening) and KG (geometrical effects not instabilizing): a much weaker, necessary not
sufficient condition is the positive semidefiniteness of matrices G and K.

Let us now compare the relation set (3.14), (3.15) to (A3) of Appendix A.2. Through the
identifications:

A = O. E = 0, D=M, c = q, b=O (3.22)
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the set (3. 14), (3. 15) appears to be a special case of (A3). the above assumption on M coincides
with the hypothesis (AS) and. therefore. as pointed out in A.2. the linear complementarity
problem (3.4). D.15) is fully equivalent to a convex optimization problem of kind (A.6).
which. via (3.221. reads:

minimize

subject to

t~M~ +q~

~ 2: 0
(3.23)

Substituting into (3.23) equations (3.12), (3.13) and. subsequently. equations (3.5). (3.:-n.
(3.7) with V = N, after a little algebra, the new mathematical model (3.23) of the mechanical
problem in hand acquires the form specified in the following statement:t

(II) Under the hypothesis (3.21), in the class Qf all distributions of displacement rates Ii
and plastic multiplier rates i. which fulfill the sign restriction

(3.24)

the/any solution, if any, (~r the incremental problem for git'en straining eJlect rates F. b. IS

characterized by the maximum of the quadratiC jimction :

Q ,(it, ).} == - t~K(jit -tlH). -i<~B-IN)S(Bti - :\I}.) + f'ti +~S(Bit - :\1).)- t~Sb. 13.251

Note that the optimization postulated by Theorem (II) presumes compatibility and stands
for explicit use of equilibrium and some flow rules ($ :5 0 and~)' = 0).

By means of the compatibility and conformity requirements (2.10), (2.8) and (2.3).
we obtain from (3.24), (3.25) the alternative form:

minimize

subject to t" = Bu-Ni--o.

(3.26)

13. 27a. bl

A further consequence of Theorem (II) can be obtained, by observing that full conformity
to the constitutive laws can be imposed in the optimization process without affecting its
results, since any solution clearly complies with this requirement. From (2.9a. d) it follows
that:

13.28)

Substituting equations (J.2g). (3.27a) and (2.10) into (3.26). under the condition that for
any strain rate distribution t resulting from any generic Ii. the corresponding (through
the flow-laws) stress rates if are taken.; we may write. instead of (3.26). (3.27):

mInimIZe

subject to t = Bu.

(3.2tJ}

(JJOI

The above conclusions cover as special cases of decreasing generality the following previous
results: Ii) for small displacements (K(j = 01. and non interacting yielding modes (H
diagonal). Theorem (II) and (3.29). U.30t reduce to the two statements proved in 17::

+ For future convenience we transform the mmlmlzatlOn to a maXimization by changmg the Sign \)1· [h~

objective function. and add to the Objective the immaterial Cl1nstam _. !.~s;) lunderlin~d to i~di';ate that-lt can be
dropped for the optimization}. .

; II has been pointed out in that there exists 'I unl<.lue if" for am !" If. md onl\ If. .tli pnf1CJp,li nlmt\h ,)(
111atr1.X Gi = H' ~ ,ISI:\I ;.Irc po-\:ti\"l'
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(iil in the absence of imposed (e.g. thermal) strainrates (b = 0) they become the theorems
proved by Capurso [16J and Greenberg [ll 14J respectively: (iii) in the elastic range both
properties coincide in the classical potential energy principle applied to incremental
responses.

The theorem expressed by (3.29). (3.30) was established by Hill [2J with allowance
for large strains, but for smooth yield surfaces and in the absence of imposed internal
dislocations (b = 0) (see Section 8)

3.3.2. Assume the same restrictions (3.21 l as in the preceding subsection. Cottle's
symmetric duality theory of quadratic programming. as outlined in Appendix A.2, allows
us to write immediately the dual of problem (3.23). simply by taking account in (A7) of
the identifications (3.22);

maximize

subject to

-~M~

q+M~ ~ ° (3.31 )

Substitution into (3.31), written as a minimization problem. of equations (3.12). (3.13)
and, subsequently, of equations (3.5). (3.8). (3.7) with V = N. leads. through trivial alge­
braic manipulations and addition of the immaterial constant ~SO, to the quadratic
program:

minimize

subject to NSBiJ - (H +NSN)A S; NSO

(KE +KG)u - BSNi.. = F+ BSO.

(3.32)

(3.33)

(3.34)

This can be translated in the statement:

(III) Under the hypothesis (3.21), among all distributions of displacement rates iJ and
plastic multiplier rates A which comply with the linear constraints (3.33), (3.34), the/any
distribution which characterizes the actual response (~r there is any) to given external action
rates F, fl, minimizes the quadratic function (3.32).

Note that inequality (3.33) expresses the constitutive requirement that the plastic
potentials nowhere become positive, equation (3.34) expresses equilibrium.

We derive below some consequent formulations which give a better mechanical insight
in the above extremum properties and in their connexions with previous more particular
results, though they do not offer computational advantages.

Substitute the expression (3.5) of KE in (3.34) and take into account the equations:

BiJ-NA = te+b.

in (3.32H3.34). These become:

(3.35)

minimize

subject to

I""K . ,1-jH" I""S-t· +""~IU GU-rl' "'+~ (1 (10

Na-HA ~ 0, KGiJ+& = F
Bu- NA. = S-la+b

(3.36)

(3.37a. b)

(3.3 7c)

The optimization with respect to the constrained independent variables Ii, i... a replaces
the direct use of some constitutive rules (A ~ 0, «pA = 0) which are generally violated by
the generic feasible choice. Note that compatibility is not a consequence of the optimization
process, but must be explicitly assumed as a constraint set, equation (3.37c).
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Therefore Theorem (III) can be neither formally nor conceptually regarded as a
generalization of the complementary energy principle. However. under the stronger (l.~­

sumption that both matrices KG and Hare positire semidefinite. the compatibility constraint
(3.37c) becomes superfluous. A proof of this fact can be outlined as iollows: (3.36) becomes
a convex function of the supervector [i'i: I : ~J; (3.36) (3.37a,b) may be reduced to the
forms (A6) and, hence, (A3) with E = 0, through simple equivalence transformations; the
relation set of the kind (A3) thus obtained is readily seen to be equivalent to the system of
the governing mechanical laws (2.8H2.1l) with V = N if KG and H are definite. to admit
all solutions of this system (and possibly others) if KG and/or H are only semidefinite.
In the former case dualization leads again to Theorem (Il\.

In the absence of large displacements (KG = 0) and softening (H positive semidefinite.
Drucker's postulate valid), (3.36) becomes convex as a function of the supervector [t : &J.
Under these hypotheses. we may formulate Theorem (III) simply as follows:

mmlmlze t).H}.+~S-la+~~ 13.38)

subject to Na- HJ. :; 0; Ba = F. (3.39)

Let us prescribe that any trial [). : ~J respects the constitutive rate relations and generates
through them t; this does not affect the solution. and through (3.28) allows us to transform
(3.38), (3.39) in:

nunmuze ~(t+S) subject to Ba = F 13.-1-01

This is the expression. in the context of the matrix theory. of .\tandel's generalization [l2j
of the static minimum principle of incremental plasticity (Prager-Hodge [1.+J). U.381.
(3.39) is the analogous generalization of a theorem proved in [17J. If H is not positive semi­
definite, optimality conditions of the kind (A31 still coincide with the governing relations
of the mechanical problem. but are only necessary. i.e. not all solutions of the mechanical
problem minimize (3.38). This shows that the static extremum principle cannot rc:main
valid in general when physical instabilizing effects are present. a conclusion already
reached in [23J.

4. EXTREMUM PRINCIPLES FOR PLASTIC \1ULTIPLIER RATES

.+. I The J., <i> formulation

\Ve shall assume now that

detlKi == detlBSB+ KG! "" O. /l II

On the basis of equations 135).( 3.6) and rdevan t remarks ISectIon 3.1), hypothesIs 1'+ II
physically means that there would not exist any otha configuration adjacent to the
configuration r and equilibrated under the same external loading condition. if the s:."tcm
were to behave in a purely elastic manner in the neighbourhood of Y Under assumption
H.l I, equation \3.2) may be solved with respect to vector iJ:

iJ = K-IBSVJ.-+-K-1F~K-!BS.) 14.'::1

Substitute iJ in equation (3.3 l. Thus we obtain from 13.2 H .I.-+), fOJ the problem Il1 hand.
the following formulation involving only the unknown vectors A. <i> :

<i> = -::H-S(SBK-lBS-S)VJ},+:\ISBK-1F~:\I(SBK-lBS-S)<,) 1.+31

A~ 0. <i> So O. qi/. = I) !-qa. b. ~.:
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The following new symbols and relations are introduced and justified below:

Ze == SBK-1BS-S (4.51

erE == (rEF + erEa == SBK - IF + ZeO. (4.6)

The symmetric matrix Ze defined by equation (4.5) is easily shown to be the operator which
transforms any dislocation rate vector (, into the stress response erEa to °in the supposedly
purely elastic regime of large displacement. In fact, if plastic yielding is ruled out and
(4.1) holds. the displacement rates due to (, are supplied by equation (3.6) for F = 0:

lia = K-lBSo (4.7)

whence, through the compatibility equation (2.10) and the elastic stress-strain relation.
we obtain:

erEa = S(BiJa- 0) = (SBK - I BS - S)o. (4.8)

This justifies both the above remark on the meaning of ZG and the symbols introduced
in (4.6) and clarifies their meanings: erE represents the elastic stress rate response to the
whole set of straining effect rates and is supplied by a preliminary calculation, centered
on equation (3.6) and. hence, linear even in the presence of large displacements.

4.2 A "general" minimum theorem for plastic multiplier rates

Using equations (4.5) and (4.6) we may express the).., cjl formulation (4.3), (4.4) in a
more compact form:

-cjl = (H -NZGV)}.-NerE (4.9a)

). ~ O. -cjl ~ O. q>}. = O. (4.9b, c, d)

If compared to (A. I) (see Appendix), the relation set (4.9) in $, Aimmediately reveals the
mathematical structure of a linear complementarity problem defined by the data:

M* == H-NZeV: q* = NerE
. (4.1Oa, b)

The equivalent quadratic program. patterned according to (A.2), gives rise to the follow­
ing theorem:

(IV) In the class of all sets of plastic multiplier rates which fulfil the linear constraints:

A~O

(H-NZGV)A-NerE ~ 0

the/any solution set, ifany, minimizes the quadratic functional

R(}.) == I(H-NZGV)}.-ctENL

(4.11 )

(4.12)

(4.13)

COIll'ersely, the minimum of R(}.), if zero. characterizes the solution: ~r not zero the incre­
mental problem admits no solution.

The generality of this statement is limited only by the hypothesis (4.1) detlKI "# 0;
symmetry and definiteness of matrix M* (and hence convexity of R) are not required,
so that allowance is made for any degree and kind of instability covered by "linear"
plastic flow-laws or due to second-order geometrical effects. When small displacements
and non-interacting yielding modes are hypothesized, Theorem (IV) specializes to the
minimum principle established in [18J. in tensor notation, for continua with nonassociated
flow-laws. Other minimum properties for Acannot be expected at the same level ofgenerality
due to the self-dual character of quadratic programs of kind (A.2) (see Appendix).
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4.3 " Partimlar" extremum theorems jiH plastic multiplier rates
Assume now that matrix 1\1*. equation 14.10a). is symmetric positi!"e semidefinite [hypo­

thesis (4.14)]. This implies normality (V = N) and reciprocal interaction (H = H). and
represents a restrictive condition on the cumulative effects of possible softening and
geometry changes. Starting from the above hypothesis (4.14), we shall follow the same path
of reasoning as in Section 3: namely. the complementarity problem (4.9) is interpreted
as sufficient and necessary local Kuhn-Tucker conditions by comparing it to the relation
set (A.3) and identifying:

A = O. E = 0, D = :\'1*. c = q*. b = O. (4.15)

Thereafter the equivalent quadratic program (A.6) and its dual (A.7) are readily formed
using again (4.15), and can be expressed in the statements which follow:

(V) When the hypotheses (4.1) and (4.14) (:\1* nonnegatire definite) hold. within the class
orall nonnegative plastic multiplier rate sets.

14.16)

the/any solution set. if anv, maximi:::es the quadratic function:

H.P)

(VI) Under the hypothesis (4.1) and (4.14). in the class of all distributions of plastic
multiplier rates which satis(v the linear inequality:

14.18)

the/any solution, if' anv, minimi:::es the quadratic jimccion:

14.191

If the additional restrictions of small displacements and nonlilteracting yieldIng modes
are imposed, Theorem (V) reduces to Ceradini's principle [19J. and Theorem IVl) to a
minimum principle established in [20J.

In the range of validity of Theorems (V) and (VI). Theorem (IV) is a straightforward
consequence of them. since (4.11 H4.13) represents the "composite program'", In Cottle's
sense (see Appendix A.31, of programs (4.161, 1..+.17) and H.IS). (4.191.

All the extremum properties (lVH VI) presume that both equilibrium and com­
patibility be a priori fulfilled: the constraints 14.111. (4.16) and (4.12). H.IS) express con­
stitutive inequalities (the latter requires that the yield functions do not become positive):
the optimization process is equivalent to explicitly imposing the remaining flow rules,
specifically the nonlinear complementarity condition.

Finally it is worth noting the correspondence between Theorems (lH II)) on one Side
and Theorems (lVHVl) respectively. on the other: in fact an alternative derivation of
the latter theorems might be obtained simply by substituting in the analytical formul<.i­
tlons of the former theorems the expression \4.2) for the displacements rates.
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5. BOUNDS TO THE INSTANTANEOUS COMPLIANCE WITH RESPECT
TO A SINGLE LOAD OR DlSLOCAnON

5.1 Preliminaries

It may be useful, especially in the presence of large displacements, to evaluate or esti­
mate in a given static situation Y the ratio between a single load increment bFh applied
to a nodal point of the system and the incremental displacement c5u~ it causes there in its
direction. We shall call this ratio and its inverse (local instantaneous I stiffness and com­
pliance (or flexibility) :d respectively:

·0
F U h

1.h = F
h

'

Analogous notions can be introduced for a single dislocation component bh :

b bh
1.h = - aO

h

where iJ~ indicates the corresponding stress component generated by bh and the minus
is required by the identity of sign conventions for dh and (Jh'

In order to develop operative criteria for bounding Xk and X~ the following corollaries
of the preceding theorems are first proved.

(VIla) For load increments only (0 = 0), the (extremum) values assumed at solution
by the functions Q, and QlI to be optimized according to Theorems (/1) and (/11), equal (to
within btl) the work performed by the given load increments for the displaceme11ts they cause.

(VIlb) For dislocation increments only (F = 0), the above optimal values equal, to within
-btl, the work performed by the consequent incremental stresses for the given dislocation
increments.

Proof The energy function considered by the general Theorem (I), Section 3.2, is
related to those of Theorems (II) and (III) through:

(5.3)

(5.6)

and vanishes at any solution lio, }.0. Hence:

Q,(lio, }.o) = Q,,(lio, AO) (5.4)

as the duality theory shows in general [see Appendix A.3(a)]. Taking into account in
equation (5.4) the expressions (3.25), (3.32), and the equation

Bli-Ni.-o = t.e = 8- 1iJ (5.5)

which derives from (2.10), (2.8), (2.3), we obtain:

Q,(lio, }.o) = QIl(lio, }.o) = ttlio+#ao.

Statement (a) flows from equation (5.6) for 0 = O. statement (b) for F = O.

5.2 Upper and lower bounds from feasible U, }. distributions
In a constrained optimization a variables set is called "feasible" if it satisfies the con­

straints. We shall indicate by ti', }.' and ti", }." the vectors U, Awhich fulfil the constraints
(3.24) of Theorem (Il) and (3.33), (3.34) of Theorem (UI), respectively.
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Vectors denoted by iI"', A.'" shall form the intersection of these two feasible classes.
i.e. the class of vectors which are feasible with respect to all the above constraints and.
hence, to the programming problem postulated by Theorem (I).

Suppose that, at a given stage Y of the loading history of the system, hypothesis (3.211.
Section 3.3, holds, so that the validity of Theorems (II) and (III) is ensured.

(VIII) The compliance :d exhibited by the system with respect to a nodal load com­
ponent h. can be bracketed as follows. if vectors of the above feasible classes are ohtaind
on the basis ola load rate Fh o(arbitrary magnitude:

~ 1

f~2QI(iI'. A.'I ~ Xr ~ f:2QIl(iJ", A.")
h ~

? ?"" ~ ?

;2Q,(U"', A."') = -~h -j::.QIl(U"'. A.''') ~ /.r ~ ;2QII(iJ"'. A."')
h h h h

Proof Rewrite (5.1) in the form
Ii-· 0

. F lr u
!.h = Ii-'

Ir F

(5.71

(5.8\

(5.9)

where f == [0 ... Fh ... OJ and 00 is the exact displacement rate response to F.
If we compare equation (5.9) to (5.6\ for S = 0 and apply Theorems (II) and (Ill).

the continued inequalities (5.7) and (5.8) immediately follow through the definitions of
the feasible vectors involved. If a vector pair iJ"', A.'" is available, it supplies both a lower
and an upper bound: for the former. the second expression in (5.8) supplies a useful
alternative form, which derives from the fact that quadratic terms in the expressions
of Q, (3.25) and QII (3.32) are equal for equal arguments.

(IX) The stiffness (X~) - I which the system in the given configuration exhibits with respect
to the hth dislocation component, can be bracketed by means of the following inequalities,
as soon as feasible ['ectors are available with respect to an arbitrary 6h :

where ~ == [0 ... ()h ... OJ.
The proof of these inequalities can be patterned on the preceding one, by rewriting

(5.2) as

(/.~ I 1

and making use again of (5.6) for F = 0
All the above inequalities become equalitIes if the feasible vectors represent exaCl

solutions for the external action component Fh or 6h considered. Since feasible vectors
are much more easily found than optimal vectors, (5.7), (5.8) and (5.10), (5.11) are useful for
estimates of local f1exibilities.

It is possible to derive parallel inequalitIes which require the knowledge of vectors
feasible with respect to the quadratiC programs of Theorems lIVHVI) and to bracket the
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difference between the actual and the purely elastic local compliance with respect to Fh

or stiffness with respect to dh • These inequalities will not be derived here, for the sake of
brevity. Bounds of this kind were established in [24J in the narrower context of small
displacement theory of frames.

In conclusion, it is important to keep in mind that the finite element models referred
to herein. lead in general to underestimating the flexibility of the continuous system with
respect to a single load (the discretization adopted is in line with the displacement methods,
and satisfies compatibility everywhere. and equilibrium at the nodes [25J). Clearly the
bounds established above, concern the true flexibility of the model. not tha t of the original
continuum, which in turn is bounded from below by that of the model.

6. ON UNIQUENESS OF SOLUTIONS

6.1 General problems

By "general" we mean without any restrictions on the nature or amount of the in­
stabilizing effects. The following statements can be readily derived from the preceding
analysis combined with suitable mathematical notions.

(X) Provided that detlKI :F 0, (6.1) [or (4.1)], the solution exists and is unique for any
set of external action rates, if and only if the matrix

1\1* == H-NZGV where ZG == SBK-1BS-S (6.2)

has all principal subdeterminants positive (i.e. it is a P-matrix).
As already noted in Section 4.1, the circumstance (6.1) means response uniqueness

(and existence) for hypothetical purely elastic behaviour in the neighbourhood of the
current situation considered; this elastic behaviour can be analytically prescribed by
assuming H = kI, with k -+ lXi, where I is the identity matrix and k a scalar. If detlKI = 0,
ZG and hence M* would become meaningless.

When the plastic multipliers}. are known, they uniquely determine, through (4.2), the
velocities, whence, through (3.1), the stress rates, and through (2.8) the strain rates. There­
fore uniqueness of}. implies uniqueness of the whole incremental response of the system.
In Section 4.1. the search for}. has been reduced to the linear complementarity problem
(4.3), (4.4): therefore statement (X) follows immediately from theorem (i) of Appendix A.5
applied to the )., ep formulation (4.3), (4.4).t

For the same reasons we obtain from Theorem (ii) of Appendix A.5, the statement:

(XI) J,t'hen detlKI i= 0, the number of solutions is finite for all external action rate sets,
if, and only {f, all the principal subdeterminams f.?{ matrix (6.2) are non::ero.

(XII) If detlKI i= 0, the positive definiteness of matrix 1\1* (6.2) is a sufficient condition
for the solution to exist and be uniquefor any set ofexternal action rates.

This is an immediate consequence of (X) since the class of all P-matrices contains as
a subclass the positive definite matrices.

t The necessity of this and of the subsequent statements (XI) and (XV) is clarified by the following remark. It
appears from (4.3) via (4.5), (4.6) that the known vector of the complementarity problem in question is q = Na£.
As the vectors Nj at each corner are linearly independent, matrix N has full column rank: therefore it is possible
to find a vector 0'£ corresponding to any q. From (2.3), (2.10), (2.11) we obtain S-lirF = Bo -0, - &£ = KGo - F,
which show that for any stress rate distribution ir£ there exist external action rates F, 0 capable of generating
0'£ in elastic conditions.
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(6..+1

(XIII) When detlKI i= 0, and :\1* (6.2) is positire semidefinite. if there exists a nonnegatire
plastic multiplier l:ector A. which makes the yield function nonpositil'e [i.e. a }, Ji>asible wirh
respect to the constraints (4.11) and (4.12)], then a solution of the incremental problem I!xists.
This statement is simply the application of Cottle's Theorem (iii) (Appendix A.51 to the
complementarity problem (4.9).

Starting from the Ii, A, <i> formulation, of Section 3. the restriction detlKI ¢ °IS not
needed, but the matrix M of the equivalent complementarity problem, by its very nature.
Equation (3.13), can be neither a P-matrix, nor definite. However it is still possible to obtain
the following sufficient criterion of uniqueness:

(XIV) The solution is unique. Jar any set (If external action rates. if the matrix

r
L
" _K__ ..J. -=--C!'J [d. (3.7). (3.8)J is positire defi nite
-Cv I G

or, in other terms, if

uKuu+}.HJ.+(uB-).N)S(BiI- vA.) > 0

for any vector [i'i : ).] i= O.

Proof Suppose that the complementarity problem (3.14), (3.15) has two solutions
~l' (01 and ~2 = ~I + ~~, (02 = (01 + ~O), for the same vector q. Then

(6.5)

whence premultiplying by ~~:

(6.6)

The r.h.s. of (6.6), through (3.12), (3.13) becomes the quadratic form in [~i'i : ~).] associated
with matrix (6.3), and precisely:

(6.7)

The expression (6.7) must be positive. if (6.4) holds. unless the differences ~u. ,1), vanish.
Since the 1.h.s. 01'(6.6) is nonpositive because of(3.14bl and (3.15al, equation (6.61 requires
that (6.7), and hence ~ti. ~A., be zero Iq.e.d.l.

6.2 Problems with symml!tric operators

In less general cases. with normality (V = N) and reciprocity interaction IH = Hl.
all matrix operators involved become symmetric (tVI* = M*. tVl = \1), This gives rIse
to further statements or to useful specializations of the preceding ones. Within the class
of all symmetric matrices, the subsets of the positive definite and the P-matrices arl.?
coincident.

Hence Theorems (X) and (XIIl can be replaced by a single statement:

(XV) When derlKI i= 0, a unique solution exists jiJr any set o{ external actions it: (/lui
only if, the matrix

In.X:

is positire d(tinir('.
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Situations characterized by posicil't' semidefi niceness of matrix 16.3) and. hence. of
matrix M. are particularly interesting when ". = N (so that Cv = CI\i = C) and fI = H.
In these cases the minimum principle (Il) holds and the theorem of Appendix A.4 can be
used in order to define the totality of relevant solutions. With reference to (3.23) this theorem
requires that the difference L'1~ between two solutions satisfies the equations:

!l~ML'1~ = 0

ijL'1~ = O.

(6.9)

(6.10)

Substituting (3.h (3.8). (3.10), (3.12), (3.13) we obtain from (6.9) and (6.10) respectively:

- ":" '. --!- .
L'1uKc;L'1li + L'1i.HL'1i. + (L'1uB - ~J.N)S(B~li - NL'1Al = 0

FL'1li + ~S(BL'1li - NL'1}.) = O.

The totality of solutions to the incremental problem can be expressed as

subject to }.° z 0

(6.11 )

(6.12)

(6.13)

(6.14)

where lio, I °represent a fixed solution (if any), and L'1lio, L'1}.°represent any solution to the
equation set (6.11), (6.12).

Assume t = 0,0 = 0: a solution is certainly lio = oj.o = 0, and (6.12) becomes trivially
satisfied. Two cases can be distinguished with reference to (6.11):

(i) equation (6.11) admits a solution L'1lio" ~}.0, z O. In this case, in the neighbourhood
of the configuration Y there is an unbounded set of adjacent c01l;figurations equilibrated
under the same external actions (neutral equilibrium of Yor "eigenstate", in Hill's ter­
minology [2J). In fact, for t = 0,0 = 0, (6.12) is satisfied: lio = 0, I °= 0 is a solution
and the solution set UO = cxL'1uo" }.° = cxL'1}.o, complies with (6.14) for any 1. > O. In other
terms (6.11) defines a feasible ray in the Ii, }. space where the optimization, according to
Theorem (II) is to be performed.

(ii) Let all ~}.° solutions of (6.11) contain both positive and negative components.
Then the only possible solution for t = o. }. = 0 is the trivial one (lio = o.}.o = 0). Assume
that for given external action rates t,o there exists the optimal vector lio, I ° and that
~uo', L'1}.0' is a particular solution of (6.11), (6.12): then the constraint (6.14) defines along
the straight line

(6.15)

an interval l
1.min cxma~ which is necessarily bounded. In the present case an infinite number

of all bounded solutions are possible. i.e. an infinite number of incremental processes starting
from Y may correspond, as alternatives, to the same t, &. In a customary (Poincare's)
terminology this corresponds to a bifurcation (of the equilibrium path in the configuration
space) without neutral equilibrium at Y: an occurrence first recognized by Shanley [IJ,
and rigorously discussed later by Hill and Sewell [26J and Hill [2].

It is worth noting that the same conclusions can be reached on the basis ofTheorem (V)
for plastic multiplier rates.
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As matrix M is symmetric positive semidefinite, equation (6.9) is fully equIvalent to

M~~ = O. 1.6.161

Through (3.7), (3.8). (3.10), (3.12), (3.13). equation (6.16) yields two relations:

K~ti - BSN~j. = 0 16.171

NSB~ti-(H+NSN\l'1j. = 0 16.IXl

whence, via (3.5), (2.8). (2.9a):

KGCiti + B~a = 0

Nt.a - H~j. = t.(j> = O.

16.1 I))

(6.20)

Equation (6.19) shows that the difference between two stress rate solutions is selfeq uili­
brated for the velocity difference; the less obvious circumstance that the yield function
rates in the plastic elements are equal in all solutions, appears from equation (6.20l.

The l.h.s. of (6.11) coincides with the quadratic form of (6.4) when V = :'-I and H = H
are assumed in it. Thus the above discussion yields also an additional proof of the sufficiency
of the uniqueness criterion (6.4) for the present narrower range. In this range the condition
(6.4) can be reformulated as follows:

~KGti+}.H).+teSte> 0

~KGti +Gt > 0

(6.21 )

(6.22)

by means of the same considerations which led from (3.25) to (3.26) and (3.29\. The latter
form (6.22) is the version in the present approach of Hill's uniqueness criterion [2J in its
first form.

6.3 The extremum properties (IIl) alld (VI) ill the absence vj'solutioll uniquelless

The extremum principles (Ill) and (VI) were derived in Section 3 and 4 by dualizing
the quadratic programming problems which express the principle (II) and (VI.

The duality Theorem (b) of Appendix A.3 ensures that all.\-' solution of the primal
problem and. hence. of the incremental problem in hand, has the maximum properties
(III) and (V1); but it does not guarantee that these maxima are attained only for solutions
to the mechanical problem. Therefore. in view of the cases of non uniqueness. it IS useful
to compare the totality (0\ of solutions of (3.311 to the totality (P) of solutions of 13.231.

Let ~o be an optimal vector for (3.23) and. hence. also for (3.31); by virtue of the theorem
quoted in Appendix A..4. the optimal vector sets (P\ and (0\ can be defined as .

IPI ~:> -~" T "",~I' with \11'1~1' = 0

qCi~1' = 0

~I' 2: 0

ID) ~j)_~<)'7~~D with \M~[) = ()

q .... \I~f) 2: ()

I6.2.i !

l6.241

16.2hl

We note that 16.27) is certainly verified because "",~J) satisfies (6.261 and s<) solves 13311.
Moreover. (6.24115 certainly fulfilled bv any ""'~[); in l~lC[ for t\VO genenc members c)f IDi.
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say ~f, ~f, we may write

(6.28)

since for all optimal vectors the objective functions of (3.23) and (3.31) are equal; it follows
from (6.28) that:

_qll~D = ~fM~f-~¥M~f = Il~DMIl~D+2~fMIl~D

which vanishes by virtue of(6.26).
Thus the conclusion is reached that the whole set of (P) solutions to the incremental

problem, can be obtained from the torality of solutions supplied by the dual principles (III)
or (VI), simply by imposing the sign constraint (6.25), i.e. ), 2 O.

7. STABILITY ANALYSIS

In plastic solids the changes in stresses and, hence, in internal energy are strongly
path-dependent. A completely satisfactory answer regarding the stability of a given
equilibrium configuration can be supplied, therefore, by a kinetic criterion: stability means,
accordingly, that, in the motion produced by any set of perturbing forces acting in a time
interval Ilt, amplitudes and velocities remain bounded (asymptotically in time) and tend
to vanish as the perturbing forces tend to vanish.

The clear difficulty of applying this criterion suggests recourse to so-called criteria of
stability "in statical sense", which consider only straight line infinitesimal deformation
paths going out from the equilibrium situation. However "statical" stability of path­
dependent system is a rather controversial and ill-defined notion: critical considerations
can be found in [2,4, 13,27-29]. We shall adopt here Drucker's statical stability criterion
[13, 30J according to which a system in a state Yis stable if

L = fil > 0 (7.1 )

for any transition liM from Y to a neighbouring configuration, FM being the external force
increments required to ensure equilibrium in the disturbed state; the equilibrium at Y
is called neutral if L = 0 for some paths and > 0 for all the others, unstable if there are
some paths for which L < O.

When the external forces are conservative, (7.1) seems to be sufficient for the kinematic
stability of plastic systems, and perhaps also necessary when the flow-laws are associated
(on the contrary, kinematically stable systems in the absence of normality may violate
(7.1), as pointed out by Mandel [28J).

On the basis of the above Drucker's stability definition, the preceding analysis gives
rise easily to the following remarks:

(XVI) The system is stable in Y if
- T· .... - r - .
iI~li+AHA+(IiB-AN)S(Bli- VA) > 0 (7.2)

for any ii, ). > O.
Proof According to Theorem (I), the solution for any external force set F, makes

zero the function Q(iJ, i.) equation (3.21); hence the expression (7.1) equals the second
order work fu (to within tb(2

).

Note that condition (7.1) is, generally, not necessary, since vectors ii, i. > 0, might make
(7.1) negative without being a solution of any actual incremental problem.
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(XVII) The system is non-unstable in Y (i.e. its equilibrium is stable or nelltrall it" matrix
M. equation (3.13). is copositive.

Proal Copositive M means that ~M~ 2': 0 0.2) for any ~ 2': O. Calculating this quad­
ratic form (7.2) through (3.13), (3.13b), it appears to equal the l.h.s. of (7.1) and hence L.
for any F, while the sign restriction on ~ implies precisely the same restriction on A.

It is worth comparing the uniqueness criterion (6.4) to the stability criterion (7.11.
The former is, clearly, more restrictive (the functionals are the same but the admissible
class of the former contains that of the latter).

It may happen that (7.1) holds for Ii.. ~ 2': 0, whereas the functional (7.1) vanishes for
some Ii and ~ not 2': 0, and. hence, the response to some load increments may be not
unique: this means stable bifurcation, which therefore may precede an actual loss of
stability, as pointed out by Shanley [1].

It is essential to note that Shanley's effect merges here in a more general context than
the traditional one: it may be due either to geometrical (KG) or to physical iH. V i:= :"il
instabilizing effects or to a combination of them.

For V = N, fI H the present conclusion simply corroborates those of Section 6.2:
when H reduces to a nonnegative scalar. statement (XVI) can be given, through the same
transformations as for the corresponding uniqueness criterion, a formulation which
coincides with the specialization to small strains of one of the results obtained by Hill
in [2]. In the elastic range, lack of uniqueness and loss of stability must occur simultaneously
at an "eigenstate", when matrix K ceases to be positive definite and becomes singular.

8. MATRIX DESCRIPTION VERSUS TENSOR FIELD DESCRIPTION

The minimum principle obtained by Hill [2J, if specialized to the cases of large dis­
placements but small strains, can be expressed as follows (all quantities defined in natural
state and fixed frame. cf. Ref. [30]: summation convention adopted):

minimize

subject to:
';r5 = !(ur.s+ti,r ..... uhirtihs+uhistlhr) in F

tlr = ur on Su

I~U)

i8.2a)

i8.2bl

where' (frs' Srs are the (symmetric. referred to the original state) stress and 5train tensors
of Kirchhoff and Green-Lagrange. respectively [30]: Fr. T,. = volume and 5url~lce forces.
v' = volume of the body: ST'Su = parts of the boundary where surface forces T,. and.
respectively. displacements ur are prescribed: indicates derivative.

The same extremum propertyt has been re-established in Section 3.3. {3.291. 13.301,
in the form (for /) 0):

mmlmlze

subject to i; = Bu. I~-+I

If the two above formulations are compared. clear correspondences can be observed
between single parts which have the same mechanical meaning. The correspondence

t Hill assumes smoolh yIeld surfaces and shows that. at the solutIOn. fur any compatible mfiniteslmal van"
lion ,)Ii" lhe first variation of the functional18.1l vamshes. ,'>;01<: that ifallowance IS made for ··corners··.:j-; thrnu!!h­
,'ut in this paper. the mimmum theorems fail to be ",'ariational" in the ab,we sense.:b pumted ,)ut rn DrtlC~Cr I"
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between the first terms of (8.1) and (8.3\ (those due to the presence of large displacements)
is particularly interesting. Moreover it represents, together with the correspondence of
the equilibrium equations, in a sense the key for formally transferring results from the
matrix theory to the continuous theory and vice versa (as the other correspondences,
in pairs. of analogous terms and operators are almost selfevident). Thus. e.g. the "general"
minimum principle (I) (in Lagrangian description [30J) reads for ~ = O. V = N:

Q(ur)r) =:: J~ O"rsUh!ruh!S d V+ J' Hj)j d I"
v \"

(8.5)

subject to

(Srsh~~kUm!r+O"rsljm!Js+(Smshkt~d/s+tm= 0

(Srsh~~kUm;r + 0"rsUmfr)n S + (Smshkt~k)lls = Tm

in V

on ST (n s = unit normal vector)}

P' i ~ 0 in V. ur = ur on S•.

(8.6)

(8.7)

(8.8)

The conformity and equilibrium relations (8.6) and (8.7) correspond to (3.18b) and
(3.19) respectively, provided that in the latter pair the expression (3.27a) of te be made

explicit.
The above remarks by no means detract from the interest of discussing the results

of this paper in the framework of the functional theory. It is worth noting, moreover,
that, even for the compatible models adopted here, the convergence of the discrete solution
on the continuous solution as the finite element number increases, can be reasonably
conjectured, but, outside the elastic range, it has not been rigorously proved so far, to the
author's knowledge.

9. ON THE NUMERICAL TECHNIQUES

As it has been emphasized in the Introduction, one of the advantages of the present
approach to plastic structural analysis rests on the close connections between theoretical
conclusions and numerical procedures which can be used for solving actual engineering
problems. Some of these procedures are indicated here below as a first orientation.

9.1 Incremental problems of general kind

The linearly constrained optimizations stated in (I) and (IV) concern generally non­
convex quadratic functions. So far the only rigorous procedure for carrying them out, is the
method of Ritter [31]. This is still little known and only very recently intensively studied,
see e.g. Ref. [32].

9.2 Incremental problems which exhibit positil'e semidefinite but not symmetric matrices M.
(3.13) and M* (4.5). (4. lOa)

Theorems (I) and (IV) reduce these problems to convex quadratic programs which
can be solved by means of traditional algorithms (d. below in 9.3). However it seems more
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convenient in this class of cases to consider directly either the Ii. )., <i> formulation (Section
3.1) or the)., <i> formulation (Section 4.1) as a linear complementarity problem (see Appendix)
and to solve it e.g. by means of the algorithms established by Cottle and Dantzig.
Cottle ("principal pivoting" methods). Lemke and Graves [33]. The first three methods
actually hold for a slightly wider class of matrices; they are expounded with references
to the original works. in [34]. All are based on Dantzig's Simplex method and solve the
problem in a finite number of pivotal steps or demonstrate the inconsistency.

9.3 Incremental problems with symmetric, positive semidfinire matrices M and \1* [according
to the hypothesis (3.21\ and (4.14)J can be dealt with by means of the Theorems (II). (lII),(V I.

(VI). which reduce them to convex quadratic programming problems of special or general
nature. Several well known algorithms with termination in a finite number of steps. have
been proposed and widely applied in different fields. Books in current use e.g. [35. 36J
expound them, and sometimes [37J also the relevant computer programs. In cases of convex
but not strictly convex objective functions the remarks of Section 6.3 should be kept in
mind by applying the dual Theorems (III). (VI).

9.4 Checking stability. uniqueness oj'solurion and convexity involves the study of the nature
of suitable matrices.

Positive semidefiniteness (definiteness) is synonimous of convexity (strict convexity)
of the relevant quadratic form: it is to be tested not only in order to ensure uniqueness
or stability according to some conclusions reached in the paper, but also before applying
the procedures mentioned in 9.2 and 9.3 to incremental structural problems in advanced
stages of a loading process. Among the necessary and sufficient criteria. the most ad­
vantageous one seems to be that founded on a sequence of pivot operations on the matrix:
it requires no more than tn J multiplications, n being the matrix order [38]. The determi­
nan tal criteria are lengthy [39]. Well known, only sufficient criteria can be preferable
or of immediate use in many cases. Copositivity, postulated e.g. by statement (XVII). is
more difficult to check: determinantal tests have been established e.g. in [40] and very
recently in [41J.

P-macrices, see e.g. statement (X). are characterized in various ways e.g. in [42J and
discussed in [43].

Besides a general evaluation of the practical use of the theory developed here. various
important questions are to be answered on the basis of future computational experience.
Among them we mention here: (al the relative merit of the Ii. )., <i> formulation and of the
).. <i> formulation of incremental problems (the latter involves an easier nonlinear stage
with less unknowns. but requires the evaluation of matrix ZG); (b) the better choice. in
dubious cases between the direct use of the general method 9.1 and the use of the algorithm
quoted in 9.3 and 9.2 preceded by a convexity test.
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APPENDIX

Some notions on complementarity problems and quadratic programming

AI. The problem of finding vectors ~ E RP, ro E RP satisfying

ro = M~+q

co ~ 0, ~=o

(Ala)

(Alb. c. dl

is referred to as a linear complementarity problem [44,34.45]. RP is the p-dimensional
Euclidean space, :'\1 a given p x p-matrix, q a given p-vector: all numerical quantities are
real.

The nonlinear ortogonality requirement (Aid) is called a complementarity condition.
since it implies, if associated with the sign constraints, that in each pair of corresponding
variables uJi~' one must vanish if the other is positive,

Consider the quadratic programming problem:

mInImIZe Q =: ~.\1~ -+- i'j~

subject to \]s + q ~ 0,

\A2aJ

Since the objective function Q(s) equals U>~. it can be immediately proved that· if 1.\ II
has a solution. this solution also solves (A2): conversely. if the minimum (optimal valueJ
of problem (A2) is zero, then any optimal solution to iA2) also solves IA Il. othenvtse (A I J
has no solution.

i'vlatrix \1 may be not positive semidefinite and. hence. program (A21 not CPl1\C\.

111 this case a local minimum does not necessarily rcpresent a global mmimum.
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A.:::. Consider the two sets of relations:

C-'~11+D1; = x

.; 2 0, x 2 0 Y20 (A3)

where x, ~ E R", y, 11 E Rffl denote variable vectors: the given entities D, E, A are n x n,
m x m, m x n matrices and band c m- and n-vectors, respectively. If the underlined terms
were assigned, each relation set would reduce to a complementarity problem. On the other
hand the whole set (A3) can be put in the form (A 1) by means of the identifications:

q == [ ~bJ M == [~"'i~'~J ~ == [~J ro == [;J (A4a. b. c, d)

Assuming D and E symmetric nonnegative definite, [hypothesis (A5)]. let us take into
consideration the (convex) quadratic program:

minimize

subject to

QI == c~ +~~D~ +J. ijE11 }.

- b -l- A~+E 11 ;?: 0, ~ 2 0
(A6)

(A7)

All vectors (points) which comply with the constraints of a programming problem are
said to befeasible and to form the feasible domain in their space. The Kuhn- Tucker theorem
[46,35]. interpreted in geometric intuitive terms, states that a feasible point is a solution
of a convex program, if. and only if. the gradient of the objective function in the point is
a nonpositive linear combination of the outward-directed normals of those support
hyperplanes of the feasible domain, which contain that point, if any of such planes exist.
By translating this theorem into analytical terms, cr. [35, 36J, (A3) are found to represent
the above optimal conditions of problem (A6) and, hence, to be entirely equivalent to it
and, via (A4), to a linear complementarity problem (AI). When hypothesis (AS) fails to
apply, conditions (A3) are necessary but not sufficient for an optimum,

A.3. For E = 0, (A6) becomes the traditional formulation of a general quadratic
program in the variable;. By adding the E-terms, under hypothesis (AS), Cottle developed
the symmetric duality theory [47, 34] summarized below. The programming problem

maximize Qu == 611 -t~D~ -tijE11

subject to c+D;-A11 20, 11 20

is the dual of (A6), in the sense that, among others, the following joint properties can be
proved [48,47] :

(a) if either problem is solvable, both are solvable and the extremal values are equal:
(b) if (~o, 110) is a solution of (A6), there exists a vector 110 such that (~o .110) solves both

(A6) and (A 7): an analogous statement holds for solutions of (A7):
(e) if the feasible domain is empty in one problem but not in the other, then the objective

of the latter on the feasible domain is unbounded in the direction of optimization.
It is easy to see that:
(il if the dual problem (A7) is written as a minimization problem, its dual is exactly

the primal (A6) written as a maximization problem (symmetry property) [47J:
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(ii) if (A2) is interpreted as a special case of (A6) and dualized into IA 7), it appears to
be selfdual in the Dorn sense [49J, i.e. coincident with its dual:

(iii) if (A4) are substituted into (A2), this becomes the composite program of (A6l and
tA7), since it turns out to consist of minimizing the difference of the primal and dual ob­
jective functions over the intersection of the two feasible domains: then any optimal
solution of (A21 solves (A6) and (A7) as well [47J:

(iv) when hypothesis (AS) holds, matrix M, given by equation (A4b). is positive semi­
definite as a consequence (but symmetric if. and only if, A = 0). Then the following theorem
can be proved [50, 44J: if in (AI) the linear relations are consistent, the whole problem
(A 1) (including the complementarity condition) is solvable: therefore, if the feasible domain
of (A2) is not empty, Qattains the minimum zero over it.

AA. The entire set of solutions (optimal vectors) of a convex quadratic programming
problem is the intersection of the feasible domain with the linear manifold obtained
according to the following rule: add to any optimal vector all vectors which make zero
the quadratic form of the objective function and, simultaneously, are ortogonal to the
constant vector of the linear term of the objective function. This assertion is proved in
most standard books on nonlinear programming, e.g. in [35.36].

A.5. On the solvability and the solutions of linear complementarity problems (All
we use in the text the following theorems:

(i) a unique solution exists for any q E RP if and only if M is a matrix of class P (i.e.
has all principal minors positive) [51J:

(ii) the number of solutions is finite for all q E R p. if and only if all the principal minors
of M are nonzero [52].

(iii) if M is positive semidefinite and the constraints (A2b, c) are consistent, then prob­
lem (A I) is solvable: if M is positive definite, the constraints (A2, b c) are always consistent
[cf. (iv) in A.3 and (i) above].

(Rea/led 22 .Hal 1970)

A6cTpaKT-npe.1no.laratOTCil ynpyro-n.laCTHYeCK~teKOHCTHTYTltBHblC 3aKOHbi c nonpaBKaM~1 -l.IH c.le:lY­

tOWHX BonpocoB: oTcTynneHHc OT Hop'vla.lbHOCTlI. :.L10Bbl<: TOYKl-l .J;JtOWHe Bl)l'v!O:.KHOCTb npllc'vla palHbl\

BH.10B cxe'vl nnaCTHyeCKOrO TeyeHHil H C'vlilr~eH~tC \t;JTerma.la. C:lowHail cpe.1a la\leHilefcH \j(UC:l~\Hl

KOHeYHOrO ),le"'CWr;J c 110.1HOii COBecTll'vlOcfbfD IlOBCfD.JY. YpaBHcHHH paBHoBcCHH Kac;JkHcH ::JefjJO[l'vHfp'"

BaHHoro COCTl'HflIlH. flO ::Ja:.Ke Jccj)opMaUlHI pacc\ta fpblBafDTcH 'vla.lbIC. Ilcclc.J\eTc~ c rpy J.;1 \ [lIWe l'l'Be.I~'

Hite 110 OTHoweflHfD cKopocTeii Harpyl0K fI :lilC.JOKaUHii Ha f1pH\fep rcp'vHl~ccKHe .Jecj)O[l\1eWH' I!,!
~;JIOTCil c.lC::IYIDWHC pely.lbTa fbi:
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